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complex. The optimized structure of triplet adduct 3d at the 
unrestricted HF/6-31G* level is shown in Figure 4.16 It is 
interesting that the O O and Si-O bond distances and the Si-O-O 
angle are almost equal to those in the silanone oxide intermediate 
in the reaction of silylene with triplet oxygen.50 A calculation of 
vibrational frequencies predicts that the O-O stretching frequency 
in 3d is near 1083 cm"1 (i/ca|cd/1.126)5c'17 and shifts by 57 cm"1 

to 1026 cm"1 upon 18O substitution. These are in good agreement 
with those observed for 3a. A peroxonium ion structure (4) in 
the singlet state may be considered as an alternative disilirane-
oxygen adduct. We also calculated the vibrational frequencies 
of peroxonium intermediate 4d derived from the reaction of Id 
with singlet oxygen at the HF/6-31G* level.18 The absence of 
a band in the range 1000-1100 cm"1 in the IR spectra of 4d, which 
can be assigned to the O-O stretching vibration, may exclude the 
intermediacy of 4a. We therefore conclude that the labile in­
termediate formed in charge-transfer photooxygenation of la can 
be represented by structure 3a. A probable pathway to triplet 
adduct 3a may be a direct reaction from the excited donor-ac­
ceptor complex between la and oxygen (see Scheme I), as in the 
case of charge-transfer photooxygenation of tetramethylethylene'3 

and sulfides6 in a cryogenic oxygen matrix. 
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Fischer carbene complexes of chromium and tungsten have been 
found to participate in a wide variety of synthetically used 
transformations.1 Investigations into the reactivity of Fischer 
carbene complexes of molybdenum have been reported to a lesser 
extent.2 Recently, we reported that molybdenum-based Fischer 
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carbene complexes would readily cyclopropanate electron-poor 
olefins in good yield.3 This cyclopropanation process was found 
to occur under milder conditions and at a faster rate than the 
analogous process with chromium- and tungsten-derived com­
plexes." Reported herein is the extension of this cyclopropanation 
process to the trapping of in situ generated molybdenum vinyl­
carbene complexes (see eq I).5 We believe this to be the first 
example of the intermolecular trapping of an in situ generated 
vinylcarbene complex by an alkene. 

^ E 

OMe 

Molybdenum carbene complexes 2, 4, and 6 were prepared as 
shown in Figure I.6 Methylation of the intermediate lithium 
alkoxide has been found to proceed smoothly with MeOSO2CF3 
or MeOSO2F.7 This procedure proceeds in higher yield and with 
better reproducibility than the more commonly employed 
Me3OBF4 procedure.8 Earlier reports have suggested that mo-
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lybdenum carbene complexes are unstable and difficult to han­
dle.234 We have found that molybdenum carbene complexes 2, 
4, and 6 are relatively stable. No significant decomposition of 
these complexes was observed after storage at -10 0C for 1 week. 

Mild thermolysis (65 0C, THF, 1 h) of complex 2 in the 
presence of methyl acrylate (10 equiv) led directly to a mixture 
of vinylcyclopropanes 7a and 7b in 71% yield. The presumed 
pathway for this transformation is outlined in Scheme I. Initial 
dissociation of CO leads to coordinatively unsaturated complex 
9. Intramolecular cyclization of 9 to 10 and subsequent ring 
opening generates vinylcarbene complex 11.' Cyclopropanation 
of methyl acrylate by complex 11 gives vinylcyclopropanes 7a and 
7b. The stereoselectivity observed in this process is similar to that 
observed in previous cyclopropanation studies.10 

Several other electron-poor olefins have been found to readily 
participate in this transformation. Thermolysis of complex 2 with 
acrylonitrile, dimethyl vinylphosphonate, and methyl methacrylate 
led to 12,13, and 14 as mixtures of diastereomers (Figure 2). The 
major diastereomer in each of these transformations is that in 
which the cyclopentene ring is anti to the electron-withdrawing 
group.10 Cyclization with methyl methacrylate led to the desired 
cyclopropanes 14a and 14b in low isolated yield. Vinylcyclo­
propanes 14a and 14b appear to be less stable than the other 
vinylcyclopropanes described herein because of the presence of 
two quaternary centers on the cyclopropane ring. 

The reactivity of molybdenum carbene complex 2 was compared 
to that of the analogous chromium- and tungsten-based systems. 
Carbenes 15 and 16 were prepared by pathways analogous to those 
presented in Figure 1." Thermolysis of chromium carbene 
complex 15 in the presence of methyl acrylate (65 0C, 1 h, 
benzene) led to a complex mixture of products, none of which 
corresponded to the desired vinylcyclopropane system.12 Ther-
molytic chemistry of chromium alkynylcarbene complexes related 
to 15 has been described.13 The dominant pathway with these 
systems appears to be intramolecular cyclization of the carbene 
complex with the alkyne accompanied by incorporation of carbon 
monoxide to give a vinylketene complex. In most cases the vi-
nylketene complex undergoes subsequent transformations. In the 
cyclization of molybdenum carbene complexes 2, 4, and 6, no 
products resulting from carbon monoxide incorporation were 
detected. Thermolysis of the more stable tungsten carbene com­
plex 16 in the presence of methyl acrylate (110 0C, 1 h, toluene) 
led to the desired vinylcyclopropanes 7a and 7b. However, the 
isolated yields of 7a and 7b were considerably lower than in the 
reactions with the analogous molybdenum system. 
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M e u (M =W) toluene, (3:1,27 %) 

15 M = Cr 1h,110°C 
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Cyclization reactions with complexes 4 and 6 were investigated 
in order to explore the scope of this process. Thermolysis of 
molybdenum carbene complex 4, which has a shorter, two-
methylene tether between the carbene and the alkyne, did not lead 

(9) The intermediacy of metallocyclobutenes in the reaction of Fischer 
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K. H. Chem. Ber. 1970, 103. 1273. 
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4061. 
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to the desired 2-(l-methyl-2-carbomethoxycyclopropyl)-l-meth-
oxycyclobutene or any identifiable products derived therefrom. 
Alkynylcyclopropane 17, resulting from direct cyclopropanation 
of the carbene complex without initial addition to the alkyne, was 
the only identifiable product, in 6% isolated yield. 
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Complex 6, with the longer, four-methylene tether, when treated 
with methyl acrylate in THF at 65 0C for 1 h, led to the desired 
cyclohexenylcyclopropane 18 in 6% yield. This was the only 
identifiable product that could be isolated from this reaction. 
Cyclopropanation to give l-methoxy-l-(5-heptynyl)-2-carbo-
methoxycyclopropane was not observed. From these studies it 
appears that the success of the intramolecular cyclization to form 
the vinylcarbene complex is very dependent on the length of the 
tether. 
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In conclusion, we have demonstrated that in situ generated 
vinylcarbene complexes of molybdenum will react with elec­
tron-poor olefins to give vinylcyclopropanes in good yield. Further 
studies in this area are currently in progress. 
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Vesicles have found diverse and important applications, ranging 
from microencapsulation of dyes, flavors, and fragrances1 to drug 
delivery systems,2 to the study of membrane structure, function, 
and reactivity.3 Many such vesicles are made at least in part from 
proteins,4,5 but there has been little understanding of the mech-
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